Local discriminative distance metrics ensemble learning
نویسندگان
چکیده
The ultimate goal of distance metric learning is to incorporate abundant discriminative information to keep all data samples in the same class close and those from different classes separated. Local distance metric methods can preserve discriminative information by considering the neighborhood influence. In this paper, we propose a new local discriminative distance metrics (LDDM) algorithm to learn multiple distance metrics from each training sample (a focal sample) and in the vicinity of that focal sample (focal vicinity), to optimize local compactness and local separatiblity. Those locally learned distance metrics are used to build local classifiers which are aligned in a probabilistic framework via ensemble learning. Theoretical analysis proves the convergence rate bound, the generalization bound of the local distance metrics and the final ensemble classifier. We extensively evaluate LDDM using synthetic datasets and large benchmark UCI datasets.
منابع مشابه
Local Large-Margin Multi-Metric Learning for Face and Kinship Verification
Metric learning has attracted wide attention in face and kinship verification and a number of such algorithms have been presented over the past few years. However, most existing metric learning methods learn only one Mahalanobis distance metric from a single feature representation for each face image and cannot make use of multiple feature representations directly. In many face-related tasks, w...
متن کاملCreating diverse nearest-neighbour ensembles using simultaneous metaheuristic feature selection
The nearest-neighbour (1NN) classifier has long been used in pattern recognition, exploratory data analysis, and data mining problems. A vital consideration in obtaining good results with this technique is the choice of distance function, and correspondingly which features to consider when computing distances between samples. In recent years there has been an increasing interest in creating ens...
متن کاملLearning Discriminative Metrics via Generative Models and Kernel Learning
Metrics specifying distances between data points can be learned in a discriminative manner or fromgenerative models. In this paper, we show how to unify generative and discriminative learning of met-rics via a kernel learning framework. Specifically, we learn local metrics optimized from parametricgenerative models. These are then used as base kernels to construct a global kerne...
متن کاملLearning metrics and discriminative clustering
In this work methods have been developed to extract relevant information from large, multivariate data sets in a flexible, nonlinear way. The techniques are applicable especially at the initial, explorative phase of data analysis, in cases where an explicit indicator of relevance is available as part of the data set. The unsupervised learning methods, popular in data exploration, often rely on ...
متن کاملLocal Distance Metric Learning for Nearest Neighbor Algorithm
Distance metric learning is a successful way to enhance the performance of the nearest neighbor classifier. In most cases, however, the distribution of data does not obey a regular form and may change in different parts of the feature space. Regarding that, this paper proposes a novel local distance metric learning method, namely Local Mahalanobis Distance Learning (LMDL), in order to enhance t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 46 شماره
صفحات -
تاریخ انتشار 2013